Booms and banking crises

Frédéric Boissay, Fabrice Collard and Frank Smets
European Central Bank

2013 Central Bank Macroeconomic Modelling Workshop
Istanbul, 7-8 November 2013
The views expressed in this presentation are our own and do not necessarily reflect those of the European Central Bank or the Eurosystem.
Motivation/Objective

Better understand the dynamics of financial and real business cycles

A few features are common to financial recessions (i.e. recessions concomitant with banking crises):

- Fact #1: They are rare events
- Fact #2: They are deeper and last longer
- Fact #3: Unlike other types of recessions, financial recessions follow credit booms
Motivation/Objective

Financial recession statistics

<table>
<thead>
<tr>
<th></th>
<th>Financial</th>
<th>Other</th>
<th>Severe</th>
<th>Mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (%)</td>
<td>2.36</td>
<td>8.93</td>
<td>4.05</td>
<td>4.05</td>
</tr>
<tr>
<td>Duration (years)</td>
<td>2.32***</td>
<td>1.65</td>
<td>2.46***</td>
<td>1.25</td>
</tr>
<tr>
<td>Magnitude (%)</td>
<td>-6.84***</td>
<td>-3.75</td>
<td>-9.28***</td>
<td>-0.89</td>
</tr>
</tbody>
</table>

Credit Boom

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% credit growth 2 years before peak (a)</td>
<td>4.56***</td>
<td>0.01</td>
<td>1.33</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Credit Crunch

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% credit growth 2 years after peak (a)</td>
<td>-3.59*</td>
<td>-1.24</td>
<td>-1.69</td>
<td>-2.44</td>
</tr>
</tbody>
</table>

Source: Schularik et al. (2011), data for 14 OECD countries, 1870-2008. Crises defined as in Laeven and Valencia (2008); *,**,***: the difference is statistically significant at 10%, 5%, 1%; (a) HP–filtered credit.
Motivation/Objective

- In most DSGE models financial recessions are big negative shocks amplified.
- Can explain Facts #1 & #2
- **Cannot explain Key Fact #3** ← crises are not random
Our Framework

- Textbook stochastic optimal growth model (RBC)
- Heterogenous banks with intermediation and storage technologies
- Interbank market subject to MH and AI
- A banking crisis is an interbank market freeze
- Spill-over and feedback effects between the interbank market, the retail corporate loan market, and the real economy
Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.
Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.

The typical banking crisis follows an unusually long sequence of small, positive, transitory productivity shocks — No need for a large negative financial shock.
Main Results

1. Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.

2. The **typical banking crisis follows an unusually long sequence of small, positive, transitory productivity shocks** — No need for a large negative financial shock

3. High productivity generates a credit boom and a ballooning banking sector
Main Results

1. Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.

2. The **typical banking crisis follows an unusually long sequence of small, positive, transitory productivity shocks** — No need for a large negative financial shock.

3. High productivity generates a credit boom and a ballooning banking sector.

4. As productivity gains peter out, excess savings arise (**"saving glut"**) and interest rates fall; counterparty fears rise in the interbank market, which may lead to a freeze and banking crisis.
Main Results

1. Normal times feature productivity–driven business cycles with a small financial accelerator; a crisis every 42 years.

2. The **typical banking crisis follows an unusually long sequence of small, positive, transitory productivity shocks** — No need for a large negative financial shock

3. High productivity generates a credit boom and a ballooning banking sector

4. As productivity gains peter out, excess savings arise ("saving glut") and interest rates fall; counterparty fears rise in the interbank market, which may lead to a freeze and banking crisis

5. The subsequent financial recession is deep and long because of a credit crunch; credit–to–GDP ratio predicts financial recessions
- Full equilibrium non-linearities, such as sudden bank runs

Bianchi (2009), Bianchi-Mendoza (2010):
- Endogenous interest rates play a key role

Brunnermeier-Sannikov (2012), He-Krishnamurthy (2012):
- Typical crisis follows a rare, long sequence of positive TFP shocks
- Typical crisis identified as a bank run, not as a binding borrowing constraint

Gertler-Kiyotaki (2012)
- Bank run is market based and rationally expected
Model setup

Overview
Firm: \(\max \{k_t, h_t\} \pi_t = F(k_t, h_t; z_t) + (1 - \delta)k_t - R_t k_t - w_t h_t \)

Household:

\[
\max_{\{a_{t+\tau+1}, c_{t+\tau}, h_{t+\tau}\}_{\tau=0}^{\infty}} \mathbb{E}_t \sum_{\tau=0}^{\infty} \beta^\tau u(c_{t+\tau}, h_{t+\tau})
\]

subject to budget constraint

\[c_t + a_{t+1} = r_t a_t + w_t h_t + \pi_t + \chi_t\]

Notice that \(r_t \leq R_t \) (spread) and \(k_t \leq a_t \) (credit crunch)
The Banking Sector

- Banks are atomistic, competitive, and price takers
- Continuum of heterogeneous 1–period banks p, with cdf $\mu(p)$ over $(0, 1)$

Bank p’s net return per unit of corporate loan is pR_t

- It is beneficial to relocate funds, but relocation is impaired due to:
 - Asymmetric information: p is private information
 - Moral hazard: bank p may borrow ϕ_t and walk away ("diversion")
Banks are atomistic, competitive, and price takers

Continuum of heterogeneous 1–period banks p, with $cdf \mu(p)$ over $(0, 1)$

Bank p's net return per unit of corporate loan is pR_t

It is beneficial to relocate funds, but relocation is impaired due to:

- **Asymmetric information**: p is private information
The Banking Sector

- Banks are atomistic, competitive, and price takers
- Continuum of heterogeneous 1–period banks p, with $cdf \mu(p)$ over $(0, 1)$

Bank p’s net return per unit of corporate loan is pR_t

- It is beneficial to relocate funds, but relocation is impaired due to:
 - **Asymmetric information**: p is private information
 - **Moral hazard**: bank p may borrow ϕ_t and walk away ("diversion")
Bank \(p \) has 4 options:

1. Lend to other banks on the interbank market \(\rho_t \)
2. Store goods \(\gamma \)
3. Raise funds \(\phi_t \) from interbank market and lend to firm
 \(\rho_t (1 + \phi_t) - \rho_t \phi_t \)
4. Raise funds \(\phi_t \) from interbank market and walk away \(\gamma (1 + \theta \phi_t) \)

Incentives to divert depend on the corporate loan rate: the lower \(R_t \), the higher these incentives, and the more counterparty fears on the interbank market.
The Borrowing Bank’s Problem

Borrowing bank p solves:

$$\max_{\phi_t} r_t(p) \equiv pR_t (1 + \phi_t) - \rho_t \phi_t$$

PC: $pR_t (1 + \phi_t) - \rho_t \phi_t \geq \rho_t$ $\Rightarrow p \geq \bar{p}_t \equiv \rho_t / R_t$

IC: $\gamma (1 + \theta \phi_t) \leq \rho_t$ $\Rightarrow \phi_t = (\rho_t - \gamma) / \theta \gamma$

- Profits are fully distributed to household: $r_t \equiv \int_0^1 r_t(p) \, d\mu(p)$
Interbank Market Equilibrium

Interbank market clearing condition

\[
\mu(\bar{p}_t) = \frac{(1 - \mu(\bar{p}_t)) \times \phi_t}{\phi_t}
\]

"extensive margin" (−) "intensive margin" (+)

with \(\bar{p}_t \equiv \rho_t / R_t \) and \(\phi_t = (\rho_t - \gamma) / \theta \gamma \)

Two opposite effects on aggregate demand of a decrease in \(\rho_t \)
Interbank Market Equilibrium

The interbank market freezes when the retail corporate loan rate is below a threshold.
Interbank Market Equilibrium

The interbank market freezes when the retail corporate loan rate is below a threshold.
Interbank Market Equilibrium

The interbank market freezes when the retail corporate loan rate is below a threshold.
Proposition (Interbank loan market freeze): The interbank loan market is at work if and only if \(a_t \leq \bar{a}_t \equiv f_k^{-1}(\bar{R} + \delta - 1; z_t) \), and freezes otherwise.

- The interbank market improves efficiency but freezes when \(R_t < \bar{R} \)
- In general equilibrium, \(R_t \) is driven by savings \((a_t) \) and technology \((z_t) \). Hence the interbank market freezes when \(a_t > \bar{a}(z_t) \)
- **Threshold** \(\bar{a}(z_t) \) is the banking sector’s "absorption capacity"
Calibration of the real side is standard

Financial sector \((\gamma, \theta, \mu(\cdot))\) is calibrated so that:
- Crisis probability is 2.3%
- Average interest rate spread is 1.7%
- Average corporate loan rate of 4.4%

The model is solved numerically by a collocation method
Variety of crises: shock-driven (S) and credit boom-driven (U)
History suggests that credit–boom driven crises prevail
Quantitative Analysis

Typical path to crisis

![Graphs showing assets and absorption capacity and TFP level (log.) with annotations for different dynamics and simulations.]

- Dynamics in normal times,
- Dynamics during a crisis,
- Dynamics of \(\bar{\alpha}_t \),
- Average across simulations,
- 66% Confidence band around typical path,
- Underlying TFP innovations (\(\varepsilon_t \)).
Quantitative Analysis

Typical path to crisis
Quantitative Analysis

Typical path to crisis

![Graphs showing output, consumption, and 1-step ahead probability over years.](image)
At the beginning, a positive shock brings TFP above its mean

- Credit demand rises. Return on savings goes up. The household accumulates assets for consumption smoothing

TFP goes down back to mean but remains above it for a long time

- Credit demand decreases, while the household keeps on accumulating savings; interest rates go down

As the probability of a crisis increases, the household maintains savings to hedge against a more likely loss of revenue, which works to reduce interest rates and to raise the likelihood of a crisis even further — saving glut externality

A crisis breaks out as the corporate loan R_t rate crosses threshold \bar{R}
Quantitative Assessment

Financial recession statistics

<table>
<thead>
<tr>
<th></th>
<th>Financial</th>
<th>Other</th>
<th>Severe</th>
<th>Mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (%)</td>
<td>2.35</td>
<td>8.94</td>
<td>3.76</td>
<td>3.76</td>
</tr>
<tr>
<td>Duration (years)</td>
<td>2.08</td>
<td>1.39</td>
<td>2.22</td>
<td>1.04</td>
</tr>
<tr>
<td>Magnitude (%)</td>
<td>-12.60</td>
<td>-4.98</td>
<td>-11.32</td>
<td>-3.28</td>
</tr>
</tbody>
</table>

Credit Boom

| % credit growth 2 years before peak (a) | 3.81 | 0.11 | 2.33 | 0.06 |

Credit Crunch

| % credit growth 2 years after peak (a) | -5.09 | 0.09 | -2.97 | 0.02 |

(a) HP–filtered credit.
Welfare

%-Loss in permanent consumption

<table>
<thead>
<tr>
<th>Financial frictions</th>
<th>Deficient institutions</th>
<th>Externalities</th>
<th>Fin. under-development</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBA – DEA</td>
<td>FBA – CEA</td>
<td>CEA – DEA</td>
<td>DEA – NIM</td>
</tr>
<tr>
<td>2.20</td>
<td>1.53</td>
<td>0.61</td>
<td>4.61</td>
</tr>
</tbody>
</table>

FBA: Fist Best Allocation; DEA: Decentralized Equilibrium Allocation
CEA: Constrained Efficient Allocation; NIM: No Interbank Market
Concluding Remarks

• Develop a simple quantitative macro-model with banking crises, where crises are not caused by large, negative, financial shocks but rather by long sequences of small, positive, productivity shocks

• Credit booms are conducive to crises

• Highlight the role of consumption smoothing and saving glut externalities

• From a policy making perspective:
 • Framework for both crisis management and crisis prevention
 • DSGE-based probability of a crisis
THANK YOU
Return on Deposits and Corporate Loan Supply

- Return on deposits:

\[
R_t \left(\int_{\frac{1}{P_t}}^{1} p \frac{d\mu(p)}{1-\mu(p)} \right), \text{ if an equilibrium with trade exists}
\]

\[
r_t = \begin{cases}
R_t \left(\frac{\gamma}{R_t} \mu \left(\frac{\gamma}{R_t} \right) + \int_{\frac{\gamma}{R_t}}^{1} p \, d\mu(p) \right), & \text{otherwise.}
\end{cases}
\]

- Corporate loan supply

\[
k_t = \begin{cases}
a_t, & \text{if an equilibrium with trade exists}
(1 - \mu \left(\frac{\gamma}{R_t} \right)) a_t, & \text{otherwise}
\end{cases}
\]
Interest Rates
Endogenous and exogenous sources of instability

(a) Assets (a_t) as endogenous source of crisis

(b) Productivity (z_t) as exogenous source of crisis
Optimal Decision Rules
Quantitative Analysis

Two counter-factual experiments

Typical paths to crisis without smoothing or externality

Assets

TFP Level (Log.)

Years

Baseline; No saving glut externality; Constant saving rate.
Quantitative Assessment
Dynamics of output and credit gaps around recessions

(a) Financial Recessions

Output
(% deviation about trend)

Credit
(% deviation about trend)

Model, Data; 66% Confidence band (model)
Quantitative Assessment
Dynamics of output and credit gaps around recessions

(b) Normal Recessions

Output (% deviation about trend)

Credit (% deviation about trend)

Model, - Data; 66% Confidence band (model)
Crisis Prediction

Type–I and Type–II errors

<table>
<thead>
<tr>
<th>Model Probability (benchmark)</th>
<th>Probability regressions</th>
<th>Logit (benchmark)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>a</td>
</tr>
<tr>
<td>R²</td>
<td>0.03</td>
<td>0.55</td>
</tr>
<tr>
<td>F-Test</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Type-I errors (%)</td>
<td>31.43</td>
<td>100.00</td>
</tr>
<tr>
<td>Type-II errors (%)</td>
<td>4.85</td>
<td>0.00</td>
</tr>
<tr>
<td>N. warnings</td>
<td>30,215</td>
<td>0</td>
</tr>
<tr>
<td>N. crises</td>
<td>11,739</td>
<td>11,739</td>
</tr>
<tr>
<td>N. obs (simul.)</td>
<td>468,769</td>
<td>468,769</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

Financial recession statistics

<table>
<thead>
<tr>
<th>Frequency (%)</th>
<th>Duration (years)</th>
<th>Magnitude (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.35</td>
<td>2.08</td>
<td>-12.60</td>
</tr>
<tr>
<td>4.74</td>
<td>1.75</td>
<td>-10.61</td>
</tr>
<tr>
<td>3.45</td>
<td>2.31</td>
<td>-16.33</td>
</tr>
<tr>
<td>5.87</td>
<td>1.72</td>
<td>-9.29</td>
</tr>
<tr>
<td>5.73</td>
<td>1.84</td>
<td>-12.05</td>
</tr>
<tr>
<td>4.56</td>
<td>2.09</td>
<td>-15.40</td>
</tr>
<tr>
<td>4.34</td>
<td>2.22</td>
<td>-17.82</td>
</tr>
<tr>
<td>2.32</td>
<td></td>
<td>-10.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline</th>
<th>σ</th>
<th>ν</th>
<th>θ</th>
<th>λ</th>
<th>σ_z</th>
<th>ρ_z</th>
<th>Altern.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>0.25</td>
<td>0.15</td>
<td>20</td>
<td>0.025</td>
<td>0.70</td>
<td>TFP</td>
</tr>
</tbody>
</table>

Boissay - Collard - Smets

MFM October 2013 Conference
Endogenous Cycles
Two deterministic versions of the model (constant TFP)

(b) Asymptotic dynamics

\[\theta = 0.26 \]

\[\theta = 0.27 \]

Dynamics of aggregates, \(\bar{\alpha}_t \).