Inflation Dynamics During the Financial Crisis

S. Gilchrist1 R. Schoenle2 J. W. Sim3 E. Zakrajšek3

1Boston University and NBER
2Brandeis University
3Federal Reserve Board

21st CEPR ESSIM
Central Bank of the Republic of Turkey
May 21–24, 2013

DISCLAIMER: The views expressed are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System.
Motivation

- In spite of massive contraction in economic activity during the 2007–09 financial crisis, the general level of prices has remained surprisingly stable.
- What accounts for the absence of deflationary pressures in light of the enormous and persistent resource slack in the economy?
- This paper investigates the effect of financial conditions on firms’ price-setting behavior during the “Great Recession.”
OVERVIEW

- Merge **item-level** prices of individual producers included in the Bureau of Labor Statistics’ **Producer Price Index** (PPI) to their income and balance sheet data from Compustat.
- Analyze how balance sheet conditions influence firm-level price-setting behavior:
 - Investment into customer base ⇒ price cut

 (Rotemberg & Woodford [1991]; Chevalier & Scharfstein [1996])

- Build a DSGE model that embeds **financial frictions** in a **customer-markets** framework:
 - Explore output and inflation dynamics in response to demand and financial shocks.
 - What happens at the ZLB?
DATA SOURCES

- Monthly *good-level* price data underlying the PPI. (Nakamura & Steinsson [2008]; Goldberg & Hellerstein [2009]; Bhattarai & Schoenle [2010])
- Match 700+ PPI respondents to their income and balance sheet data from Compustat.
- Sample period: Jan2005–Sep2012
Aggregate Inflation
All PPI respondents vs. publicly-traded firms

3-month moving average

Note: Seasonally-adjusted weighted average inflation at a monthly rate.
Relative Inflation by Firm Characteristics

- **Relative item-level inflation**: \(\hat{\pi}_{ijkt} = \pi_{ijkt} - \pi_{kt} \)
- **Sorting procedure**:
 - In period \(t \), sort firms into categories based on observable characteristics in periods \(t - 1, t - 2, \ldots \)
 - Compute aggregate relative inflation rate in period \(t \) for the different categories of firms.
- **Financial characteristics**: liquidity, cashflow, interest expense
- **Other characteristics**:
 - SG&A expense: customer markets vs. operating efficiency?
 - Durability of output: durable vs. nondurable goods
RELATIVE INFLATION

Financially unconstrained firms

NOTE: Weighted average monthly inflation relative to industry (2-digit NAICS) inflation.
Relative Inflation

Financially constrained firms

3-month moving average

Low liquid assets
Low operating income
High interest expense

NOTE: Weighted average monthly inflation relative to industry (2-digit NAICS) inflation.
PRICE ADJUSTMENT AND FIRM CHARACTERISTICS

- Multinomial logit specification:

\[
Pr(\Delta p_{ij,t+1}) = \begin{cases}
+ & \text{0 (base)} \\
- & \Lambda(X_{jt}; \beta_t)
\end{cases}
\]

- \(X_{jt} = \text{SGAX/sales ratio, liquidity ratio, other controls}\)

- Time-varying elasticity of price changes w.r.t. liquidity ratio:

![Graph showing the time-varying elasticity of price changes](image-url)
Preferences

- Household preferences display “Deep Habits.”
 \[\text{(Ravn, Schmitt-Grohe & Uribe [2006])} \]
- Maximization problem:
 \[
 \max \mathbb{E}_t \sum_{s=0}^{\infty} \beta^s U(x^j_{t+s} - \delta_{t+s}, h^j_{t+s}); \quad j \in [0, 1]
 \]
 \[\downarrow \]
 Aggregator: \(x^j_t \equiv \left[\int_0^1 \left(\frac{c^j_{it}}{s^j_{i,t-1}} \right)^{1-\frac{1}{\eta}} di \right]^{\frac{1}{1-\frac{1}{\eta}}}; \quad i \in [0, 1] \]
 \[\downarrow \]
 Law of motion: \(s_{it} = \rho s_{i,t-1} + (1 - \rho)c_{it}; \quad 0 < \rho < 1 \)
 \[\text{Example: Video games—the more you play, the more addicted you become!} \]
 \[\downarrow \]
 \(\delta_{t+s} = \text{demand shock} \)
Technology

- Production function (labor input, fixed operating costs):
 \[y_{it} = \left[\frac{A_t h_{it}}{a_{it}} \right]^\alpha - \phi_i; \quad 0 < \alpha \leq 1 \]

 - \(A_t \) = persistent aggregate technology shock
 - \(a_{it} \) = i.i.d. idiosyncratic technology shock with
 \[\log a_{it} \sim N(-0.5\sigma^2, \sigma^2) \]

- Heterogeneous fixed operating costs:
 - \(\phi_i \in \Phi = \{\phi_1, \ldots, \phi_N\} \), with \(0 \leq \phi_1 < \phi_2 < \cdots < \phi_N \).
 - Firm measure: \(\omega_1, \ldots, \omega_N \), with \(\sum_{k=1}^{N} \omega_k = 1 \).

- Benchmark model: \(\phi_i = \phi \) (homogeneous firms)
Frictions

- Nominal rigidities:
 (Rotemberg [1982])

\[
\frac{\gamma}{2} \left(\frac{P_{it}}{P_{i,t-1}} - \bar{\pi} \right)^2 c_t = \frac{\gamma}{2} \left(\pi t \frac{P_{it}}{P_{i,t-1}} - \bar{\pi} \right)^2 c_t; \quad p_{it} \equiv \frac{P_{it}}{P_t}
\]

- Financial frictions \(\Rightarrow\) costly equity financing
 (Myers & Majluf [1984]; Gomes [2001]; Stein [2003])

 - Dilution cost (\(0 < \varphi < 1\)): 1$ of issuance brings in \((1 - \varphi)\)$

\[
\tilde{\varphi}(d_{it}) \equiv - \left[d_{it} - \varphi \min \{0, d_{it}\} \right] = \begin{cases}
-d_{it} & \text{if } d_{it} \geq 0 \\
-(1 - \varphi)d_{it} & \text{if } d_{it} < 0
\end{cases}
\]
Timing

Within-period sequence of events:

1. Aggregate information arrives in the morning
2. Firms post prices based on aggregate information
3. Take orders, plan production based on expected marginal cost
4. Idiosyncratic shock realized after orders have been taken
5. Firms meet demand based on originally posted prices and orders

Facilitates aggregation and smooth solution.

(Kiley & Sim [2012])
Firm Problem

- Maximize the expected present value of dividends:

\[
\mathcal{L} = \mathbb{E}_0 \sum_{t=0}^{\infty} m_{0,t} \left\{ d_{it} + \kappa_{it} \left[\left(\frac{A_t}{a_{it}} h_{it} \right)^\alpha - \phi_k - c_{it} \right] + \xi_{it} \left[p_{it} c_{it} - w_i h_{it} - \frac{\gamma}{2} \left(\frac{\pi_t}{p_{i,t-1}} - \bar{\pi} \right)^2 c_t - \bar{\phi}(d_{it}) \right] + \nu_{it} \left[\left(\frac{p_{it}}{\tilde{p}_t} \right)^{-\eta} s_{i,t-1}^{\theta(1-\eta)} x_t - c_{it} \right] + \lambda_{it} [\rho s_{i,t-1} + (1 - \rho) c_{it} - s_{it}] \right\}
\]

- Externality-adjusted composite price index:

\[
\tilde{p}_t \equiv \left[\int_0^1 (p_{it} s_{i,t-1}^{\theta})^{1-\eta} d\xi \right]^{1/(1-\eta)}
\]

- \(p_{it}, c_{it}, s_{it} \) chosen before the realization of idiosyncratic shock \(a_{it} \).
- \(d_{it}, h_{it} \) chosen after the realization of idiosyncratic shock \(a_{it} \).
Shadow Value of Internal Funds

- **FOC on dividends:**

\[
\xi(a_t; \phi_k) = \begin{cases}
1 & \text{if } a_t \leq a_t^E(\phi_k) \\
\frac{1}{1 - \varphi} & \text{if } a_t > a_t^E(\phi_k)
\end{cases}
\]

- **External financing trigger:**

\[
a_t^E(\phi_k) = \frac{A_t}{w_t} \left[\frac{c_{kt}}{(c_{kt} + \phi_k)^{\frac{1}{\alpha}}} \right] \left[p_{kt} - \frac{\gamma}{2} \left(\frac{\pi_t}{p_{k,t-1} - \bar{\pi}} \right)^2 \frac{c_t}{c_{kt}} \right]
\]

- **Expected shadow value of internal funds:**

\[
\mathbb{E}_t^a[\xi_{it} | \phi_k] = 1 + \frac{\varphi}{1 - \varphi} \left[1 - \Phi(z_t^E(\phi_k)) \right] \geq 1
\]

\[
z_t^E(\phi_k) \equiv \frac{1}{\sigma} [\log a_t^E(\phi_k) + 0.5\sigma^2]
\]
Markups

- **Aggregate markup:**

\[\mu(A_t, c_t, w_t; \phi_k) = \alpha(A_t/w_t)(c_t + \phi_k)^{\frac{\alpha - 1}{\alpha}} \]

- **Financially-adjusted markup:**

\[\tilde{\mu}(A_t, c_t, w_t; \phi_k) \equiv \frac{\mathbb{E}_t^a[\xi_{it} | \phi_k]}{\mathbb{E}_t^a[\xi_{it}a_{it} | \phi_k]} \mu(A_t, c_t, w_t; \phi_k) \leq \mu(A_t, c_t, w_t; \phi_k) \]

where

\[\mathbb{E}_t^a[\xi_{it}a_{it} | \phi_k] = 1 + \frac{\varphi}{1 - \varphi} [1 - \Phi(z_{it}^E(\phi_k - \sigma))] \]

\[\mathbb{E}_t^a[\xi_{it}a_{it}] \geq \mathbb{E}_t^a[\xi_{it}] \geq 1 \]

- Financial frictions increase marginal costs \(\Rightarrow \) lower markups.
Price-Setting Without Nominal Rigidities

- No customer markets:

\[p_{kt} = \eta \left[1 - \frac{1}{\tilde{\mu}_t(\phi_k)} \right] \]

- With customer markets:

\[p_{kt} = \eta \left[1 - \frac{1}{\tilde{\mu}_t(\phi_k)} \right] + \psi \mathbb{E}_t \left[\sum_{s=t}^{\infty} \tilde{\beta}_{t,s} \frac{\mathbb{E}^a_{s+1}[\xi_{i,s+1}|\phi_k]}{\mathbb{E}^a_t[\xi_{i,t}|\phi_k]} \left[1 - \frac{1}{\tilde{\mu}_{s+1}(\phi_k)} \right] \right] \]
Inflation Dynamics

- Phillips curve with financial distortions:

\[p_{kt} = \gamma \pi_{kt} \pi_t (\pi_{kt} \pi_t - 1) + \eta \left[1 - \frac{1}{\tilde{\mu}_t(\phi_k)} \right] \]

\[- \gamma E_t \left[m_{t,t+1} \frac{\mathbb{E}^a_{t+1}[\xi_{it+1}\phi_k]}{\mathbb{E}^a_t[\xi_{it}\phi_k]} \pi_{k,t+1}\pi_{t+1} (\pi_{k,t+1}\pi_{t+1} - 1) \frac{c_{t+1}}{c_{kt}} \right] \]

\[+ \psi E_t \left[\sum_{s=t}^\infty \tilde{\beta}_{t,s} \frac{\mathbb{E}^a_{s+1}[\xi_{i,s+1}\phi_k]}{\mathbb{E}^a_t[\xi_{it}\phi_k]} \left[1 - \frac{1}{\tilde{\mu}_{s+1}(\phi_k)} \right] \right] \]
Calibration

Benchmark model: homogeneous firms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences and Technology</td>
<td></td>
</tr>
<tr>
<td>Relative risk aversion: γ_x</td>
<td>1.00</td>
</tr>
<tr>
<td>Deep habit: θ</td>
<td>-0.95</td>
</tr>
<tr>
<td>Persistence of deep habit: ρ</td>
<td>0.95</td>
</tr>
<tr>
<td>Elasticity of labor supply: $1/\gamma_h$</td>
<td>5.00</td>
</tr>
<tr>
<td>Elasticity of substitution: η</td>
<td>2.00</td>
</tr>
<tr>
<td>Fixed operating costs: ϕ</td>
<td>0.21</td>
</tr>
<tr>
<td>Idiosyncratic volatility (a.r.): σ</td>
<td>0.20</td>
</tr>
<tr>
<td>Financial Frictions</td>
<td></td>
</tr>
<tr>
<td>Equity dilution costs: φ</td>
<td>0.30</td>
</tr>
<tr>
<td>Persistence of financial shock: ρ_{φ}</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Crisis Experiment: Demand Shock

Note: Blue = model w/ financial frictions; Red = model w/o financial frictions.
Demand and Financial Shock

(a) output, %

(b) hours, %

(c) inf rate, p.p.

(d) real wage, %

(e) mark-up, p.p.

(f) val of intnl. funds, p.p.

(g) val of marginal sales, %

(h) monetary policy, p.p.

NOTE: Blue = model w/ financial frictions; Red = model w/o financial frictions.
Discount Rate Shock

(a) output, %
(b) hours, %
(c) inf rate, p.p.
(d) real wage, %
(e) mark-up, p.p.
(f) val of intnl. funds, p.p.
(g) val of marginal sales, %
(h) monetary policy, %

Note: Blue = model w/ financial frictions; Red = model w/o financial frictions.
Financial Shock

Heterogeneous fixed operating costs

(a) Relative prices, %
(b) Inflation rate, %, ann
(c) Output, %
(d) Hours, %
(e) Rel mrkt & habit share, pp
(f) markup, pp
(g) val of intnl funds, pp
(h) val of marginal sales, %

NOTE: Blue = financially strong firms; Red = financially weak firms; Black = aggregate.
CONCLUSION

Mr. Marchionne and other auto executives accuse Volkswagen of exploiting the crisis to gain market share by offering aggressive discounts. “It’s a bloodbath of pricing and it’s a bloodbath on margins,” he said.

The New York Times
July 25, 2012